4.8 Article

Macrophages of diverse phenotypes drive vascularization of engineered tissues

期刊

SCIENCE ADVANCES
卷 6, 期 18, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aay6391

关键词

-

资金

  1. U.S. NIH NHLBI [R01 HL130037]
  2. Drexel Career Development Award
  3. U.S.-Israel Binational Science Foundation
  4. Bessie Stein Family Foundation Fellowship Award
  5. Koerner Family Foundation
  6. FP7 European Research Council [281501]
  7. European Research Council (ERC) [281501] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Macrophages are key contributors to vascularization, but the mechanisms behind their actions are not understood. Here, we show that diverse macrophage phenotypes have distinct effects on endothelial cell behavior, with resulting effects on vascularization of engineered tissues. In Transwell coculture, proinflammatory M1 macrophages caused endothelial cells to up-regulate genes associated with sprouting angiogenesis, whereas prohealing (M2a), proremodeling (M2c), and anti-inflammatory (M2f) macrophages promoted up-regulation of genes associated with pericyte cell differentiation. In 3D tissue-engineered human blood vessel networks in vitro, short-term exposure (1 day) to M1 macrophages increased vessel formation, while long-term exposure (3 days) caused regression. When human tissue-engineered blood vessel networks were implanted into athymic mice, macrophages expressing markers of both M1 and M2 phenotypes wrapped around and bridged adjacent vessels and formed vessel-like structures themselves. Last, depletion of host macrophages inhibited remodeling of engineered vessels, infiltration of host vessels, and anastomosis with host vessels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据