4.4 Article

Cavity filling with shear-thinning liquids

期刊

PHYSICAL REVIEW FLUIDS
卷 5, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevFluids.5.054003

关键词

-

资金

  1. Industrial Partnership for Research in Interfacial and Materials Engineering of the University of Minnesota

向作者/读者索取更多资源

The filling of small cavities with liquids plays a central role in numerous settings including imprint lithography, gravure printing, microfluidics, lubricant-impregnated surfaces, and porous-media flow. Air entrapment resulting from incomplete filling may be detrimental for certain applications. Although wetting dynamics can be complicated by liquid rheology, the influence of non-Newtonian behavior is not well understood. To develop fundamental understanding, two-dimensional numerical simulations are used to study liquid filling in two model problems involving a stationary trapezoidal cavity and a horizontal plate above the cavity. In these model problems, liquid is driven into the cavity by (i) an imposed pressure gradient and (ii) a combination of horizontal plate motion and an imposed pressure gradient. Shear-thinning liquids described by a Carreau-type expression are considered, and the nonlinear governing equations with inertia and gravity neglected are solved using the Galerkin finite-element method. For both model problems, it is found that increasing cavity width and wettability, decreasing wall steepness, or lowering the capillary number generally improves filling by allowing the contact line on the cavity to slip more. Shear thinning enhances contact-line motion via reduced viscosities near the dynamic contact line and, as a consequence, leads to improved cavity filling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据