4.2 Article

Analytical Transport Network Theory for Onsager, Coupled Flows: Part 1-Channel-Scale Modeling of Linear, Electrokinetic Flow

出版社

ASME
DOI: 10.1115/1.4047332

关键词

analytical; transport; network; coupled; flow; electrokinetic; Onsager; microstructure; three-dimensional; heterogeneous; advanced materials characterization; analysis and design of components; devices; systems; electrochemical engineering; novel numerical and analytical simulations

资金

  1. Army Research Laboratory under a Director's Research Initiative Early Career Award
  2. Oak Ridge Associated Universities (ORAU) postdoctoral fellowship program at Army Research Laboratory [W911NF-17-0038]

向作者/读者索取更多资源

The analytical transport network (ATN) model is extended to investigate morphology and topology influence on coupled flow systems compared to uncoupled flows, using electrokinetic flow as an example system. The developed channel-scale model provides insights into the additional influence of morphology on coupled flows, compared to uncoupled flows, and is computationally less expensive. This modeling effort leads to the development of a computationally economical, network-scale model and associated algorithm for implementation to voxel-based three-dimensional images.
The analytical transport network (ATN) model for flow through microstructural networks is extended to linearly coupled flows subject to Onsager reciprocity. Electrokinetic flow is used as an example system. Through the extension, we gain an improved understanding of if, and how, morphology and topology influence coupled flow systems differently than un-coupled flows. In Part 1, a channel-scale model is developed to describe electrokinetic flow through a channel of arbitrary morphology. The analytical model agrees well with finite element analysis (FEA), but is significantly less expensive in terms of computational resources, and, furthermore, offers general insight into morphology's additional influence on coupled flows relative to uncoupled flows. In Part 2, we exploit these savings to develop a computationally economical, network-scale model and associated algorithm for its implementation to voxel-based three-dimensional images. Included in the algorithm is a means for rapidly calculating a structure's tortuosity factor. This modeling effort represents an important initial step in extending the ATN approach to coupled flow phenomena relevant to emerging technologies that rely on heterogeneous, hierarchical materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据