4.6 Article

Dynamic Solid-State Ultrasound Contrast Agent for Monitoring pH Fluctuations In Vivo

期刊

ACS SENSORS
卷 5, 期 4, 页码 1190-1197

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssensors.0c00245

关键词

ultrasound; nanosensor; biosensor; pH; mouse; layer-by-layer; silica; organosilica

向作者/读者索取更多资源

The key challenge for in vivo biosensing is to design biomarker-responsive contrast agents that can be readily detected and monitored by broadly available biomedical imaging modalities. While a range of biosensors have been designed for optical, photoacoustic, and magnetic resonance imaging (MRI) modalities, technical challenges have hindered the development of ultrasound biosensors, even though ultrasound is widely available, portable, safe, and capable of both surface and deep tissue imaging. Typically, contrast-enhanced ultrasound imaging is generated by gas-filled microbubbles. However, they suffer from short imaging times because of the diffusion of the gas into the surrounding media. This demands an alternate approach to generate nanosensors that reveal pH-specific changes in ultrasound contrast in biological environments. Silica cores were coated with pH-responsive poly(methacrylic acid) (PMA(SH)) in a layer-by-layer (LbL) approach and subsequently covered in a porous organosilica shell. Transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) were employed to monitor the successful fabrication of multilayered particles and prove the pH-dependent shrinkage/swelling of the PMA(SH) layer. This demonstrates that reduction in pH below healthy physiological levels resulted in significant increases in ultrasound contrast, in gel phantoms, mouse cadaver tissue, and live mice. The future of such materials could be developed into a platform of biomarker-responsive ultrasound contrast agents for clinical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据