4.7 Article

15.3% efficiency all-small-molecule organic solar cells enabled by symmetric phenyl substitution

期刊

SCIENCE CHINA-MATERIALS
卷 63, 期 7, 页码 1142-1150

出版社

SCIENCE PRESS
DOI: 10.1007/s40843-020-1269-9

关键词

organic solar cells; all-small-molecule; non-fullerene; crystallinity; intermolecular interaction

资金

  1. Basic and Applied Basic Research Major Program of Guangdong Province [2019B030302007]
  2. National Natural Science Foundation of China [51873217, 21734008, 51703228, 51961135103, 51773047, 51903239]

向作者/读者索取更多资源

Synergistic optimization of donor-acceptor blend morphologyis a hurdle in the path of realizing efficient non-fullerene small-molecule organic solar cells (NFSM-OSCs) due to the anisotropic conjugated backbones of both donor and acceptor. Therefore, developing a facile molecular design strategy to effectively regulate the crystalline properties of photoactive materials, and thus, enable the optimization of blend morphology is of vital importance. In this study, a new donor molecule B1, comprising phenyl-substituted benzodithiophene (BDT) central unit, exhibits strong interaction with the non-fullerene acceptor BO-4Cl in comparison with its corresponding thiophene-substituted BDT-based material, BTR. As a result, the B1 is affected and induced from an edge-on to a face-on orientation by the acceptor, while the BTR and the acceptor behave individually for the similar molecular orientation in pristine and blend films according to grazing incidence wide angle X-ray scattering results. It means the donor-acceptor blend morphology is synergistically optimized in the B1 system, and the B1:BO-4Cl-based devices achieve an outstanding power conversion efficiency (PCE) of 15.3%, further certified to be 15.1% by the National Institute of Metrology, China. Our results demonstrate a simple and effective strategy to improve the crystalline properties of the donor molecule as well as synergistically optimize the morphology of the all-small-molecule system, leading to the high-performance NFSM-OSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据