4.7 Article

Solution-Processed, Large-Area, Two-Dimensional Crystals of Organic Semiconductors for Field-Effect Transistors and Phototransistors

期刊

ACS CENTRAL SCIENCE
卷 6, 期 5, 页码 636-652

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscentsci.0c00251

关键词

-

资金

  1. National Key RD Program [2016YFB0401100, 2017YFA0204503]
  2. National Natural Science Foundation of China [91833306, 51633006, 51703159, 51733004, 21875158]

向作者/读者索取更多资源

Organic electronics with it-conjugated organic semiconductors are promising candidates for the next electronics revolution. For the conductive channel, the large-area two-dimensional (2D) crystals of organic semiconductors (2DCOS) serve as useful scaffolds for modern organic electronics, benefiting not only from long-range order and low defect density nature but also from unique charge transport characteristic and photoelectrical properties. Meanwhile, the solution process with advantages of cost-effectiveness and room temperature compatibility is the foundation of high-throughput print electrical devices. Herein, we will give an insightful overview to witness the huge advances in 2DCOS over the past decade. First, the typical influencing factors and state-of-the-art assembly strategies of the solution-process for large-area 2DCOS over sub-millimeter even to wafer size are discussed accompanying rational evaluation. Then, the charge transport characteristics and contact resistance of 2DCOS-based transistors are explored. Following this, beyond single transistors, the p-n junction devices and planar integrated circuits based on 2DCOS are also emphasized. Furthermore, the burgeoning phototransistors (OPTs) based on crystals in the 2D limits are elaborated. Next, we emphasized the unique and enhanced photoelectrical properties based on a hybrid system with other 2D van der Waals solids. Finally, frontier insights and opportunities are proposed, promoting further research in this field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据