4.5 Article

Comparison of MongoDB and Cassandra Databases for Spectrum Monitoring As-a-Service

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNSM.2019.2942475

关键词

Sensors; Databases; Data models; Cognitive radio; Cloud computing; Computer architecture; Data processing; Distributed spectrum sensing; big data; Lambda architecture; NoSQL; data model; MapReduce; data visualization

资金

  1. European Union [815974, 825012]

向作者/读者索取更多资源

Due to the growing number of devices accessing the Internet through wireless networks, the radio spectrum has become a highly contended resource. The availability of low cost radio spectrum monitoring sensors enables a geographically distributed, real-time observation of the spectrum to spot inefficiencies and to develop new strategies for its utilization. The potentially large number of sensors to be deployed and the intrinsic nature of data make this task a Big Data problem. In this work we design, implement, and validate a hardware and software architecture for wideband radio spectrum monitoring inspired to the Lambda architecture. This system offers Spectrum Sensing as a Service to let end users easily access and process radio spectrum data. To minimize the latency of services offered by the platform, we fine tune the data processing chain. From the analysis of sensor data characteristics, we design the data models for MongoDB and Cassandra, two popular NoSQL databases. A MapReduce job for spectrum visualization has been developed to show the potential of our approach and to identify the challenges in processing spectrum sensor data. We experimentally evaluate and compare the performance of the two databases in terms of application processing time for different types of queries applied on data streams with heterogeneous generation rate. Our experiments show that Cassandra outperforms MongoDB in most cases, with some exceptions depending on data stream rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据