4.7 Article

A Layer Jamming Actuator for Tunable Stiffness and Shape-Changing Devices

期刊

SOFT ROBOTICS
卷 8, 期 1, 页码 85-96

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/soro.2019.0182

关键词

variable stiffness; variable shape; layer jamming; inflatable actuators; wearable devices; soft robotics

类别

资金

  1. project MOTU (robotic prosthesis with sMart sOcket and bidirectional inTerface for lower limb ampUtees) - INAIL

向作者/读者索取更多资源

Changing the pressure of different inflatable chambers can effectively modulate the shape and stiffness of a device, showing potential applications in robotics and wearable robotics.
Changing the shape and the stiffness of a device in a dynamic and controlled way enables important advancements in the field of robotics and wearable robotics. Variable stiffness materials and technologies can be used to address this challenge. In particular, layer jamming actuation is a very promising technology, featured by high efficiency and low cost. In this article, a stiffness- and shape-changing device based on a novel mechanism including a multiple-chamber structure is proposed. It allows to effectively modulate the shape and stiffness of a device, by activating two jamming chambers while pressurizing/depressurizing one or more interposed inflatable chambers. Prototypes with a size of 45 x 270 mm(2) and an average thickness ranging from 4.4 to 13 mm were developed and their ability to undergo a stiffness change over two orders of magnitude was demonstrated. The prototypes were also able to change their shape according to the position and inflation level of the interposed inflatable chambers, thus resulting in an overall deflection >10 mm. The possibility to wear the system as an orthotic brace was also demonstrated: this technology increased the patient comfort in static positions, yet keeping a supportive function when needed (e.g., in dynamic conditions). The device working principle highlighted in this article could also be exploited in other domains, for example, to build walking soft robots, prostheses, or grippers, as demonstrated through additional tests.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据