4.6 Article

Adaptive Subset-Based Digital Image Correlation for Fatigue Crack Evaluation

期刊

APPLIED SCIENCES-BASEL
卷 10, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/app10103574

关键词

fatigue crack evaluation; digital image correlation; adaptive subset size; statistical optimization; automated subset size determination

资金

  1. National Research Foundation of Korea
  2. Ministry of the Interior and Safety as Human Resource Development Project in Disaster Management

向作者/读者索取更多资源

This paper proposes a fatigue crack evaluation technique based on digital image correlation (DIC) with statistically optimized adaptive subsets. In conventional DIC analysis, a uniform subset size is typically utilized throughout the entire region of interest (ROI), which is determined by experts' subjective judgement. The basic assumption of the conventional DIC analysis is that speckle patterns are uniformly distributed within the ROI of a target image. However, the speckle patterns on the ROI are often spatially biased, augmenting spatially different DIC errors. Thus, a subset size optimization with spatially different sizes, called adaptive subset sizes, is needed to improve the DIC accuracy. In this paper, the adaptive subset size optimization algorithm is newly proposed and experimentally validated using an aluminum plate with sprayed speckle patterns which are not spatially uniform. The validation test results show that the proposed algorithm accurately estimates the horizontal displacements of 200 mu m, 500 mu m and 1 mm without any DIC error within the ROI. On the other hand, the conventional subset size determination algorithm, which employs a uniform subset size, produces the maximum error of 33% in the designed specimen. In addition, a real fatigue crack-opening phenomenon, which is a local deformation within the ROI, is evaluated using the proposed algorithm. The fatigue crack-opening phenomenon as well as the corresponding displacement distribution nearby the fatigue crack tip are effectively visualized under the uniaxial tensile conditions of 0.2, 1.0, 1.4 and 1.7 mm, while the conventional algorithm shows local DIC errors, especially at crack opening areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据