4.7 Article

Role of intermediate 4f states in tuning the band structure of high entropy oxides

期刊

APL MATERIALS
卷 8, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0007944

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [WE 2623/14-1, HA 1344/43-1]
  2. PETRA III [20190485]
  3. Karlsruhe Institute of Technology

向作者/读者索取更多资源

High entropy oxides (HEOs) are single-phase solid solutions consisting of 5 or more cations in approximately equiatomic proportions. In this study, we show the reversible control of optical properties in a rare-earth (RE) based HEO-(Ce0.2La0.2Pr0.2Sm0.2Y0.2)O2-delta and subsequently utilize a combination of spectroscopic techniques to derive the features of the electronic band structure underpinning the observed optical phenomena. Heat treatment of the HEO under a vacuum atmosphere followed by reheat treatment in air results in a reversible change in the bandgap energy, from 1.9 eV to 2.5 eV. The finding is consistent with the reversible changes in the oxidation state and related f-orbital occupancy of Pr. However, no pertinent changes in the phase composition or crystal structure are observed upon the vacuum heat treatment. Furthermore, annealing of this HEO under a H-2 atmosphere, followed by reheat treatment in air, results in even larger but still a reversible change in the bandgap energy from 1.9 eV to 3.2 eV. This is accompanied by a disorder-order type crystal structure transition and changes in the O 2p-RE 5d hybridization evidenced from x-ray absorption near-edge spectra (XANES). The O K and RE M-4,M-5/L-3 XANES indicate that the presence of Ce and Pr (in 3+/4+ states) leads to the formation of intermediate 4f energy levels between the O 2p and the RE 5d gap in HEO. It is concluded that heat treatment under reducing/oxidizing atmospheres affects these intermediate levels, thus offering the possibility to tune the bandgap energy in HEOs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据