4.8 Review

2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges

期刊

ADVANCED SCIENCE
卷 7, 期 11, 页码 -

出版社

WILEY
DOI: 10.1002/advs.202000058

关键词

2D materials; information devices; nonlinear optics; optoelectronics

向作者/读者索取更多资源

Graphene and the following derivative 2D materials have been demonstrated to exhibit rich distinct optoelectronic properties, such as broadband optical response, strong and tunable light-mater interactions, and fast relaxations in the flexible nanoscale. Combining with optical platforms like fibers, waveguides, grating, and resonators, these materials has spurred a variety of active and passive applications recently. Herein, the optical and electrical properties of graphene, transition metal dichalcogenides, black phosphorus, MXene, and their derivative van der Waals heterostructures are comprehensively reviewed, followed by the design and fabrication of these 2D material-based optical structures in implementation. Next, distinct devices, ranging from lasers to light emitters, frequency convertors, modulators, detectors, plasmonic generators, and sensors, are introduced. Finally, the state-of-art investigation progress of 2D material-based optoelectronics offers a promising way to realize new conceptual and high-performance applications for information science and nanotechnology. The outlook on the development trends and important research directions are also put forward.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据