4.5 Article

Disentanglement of Spin-Orbit Torques in Pt/Co Bilayers with the Presence of Spin Hall Effect and Rashba-Edelstein Effect

期刊

PHYSICAL REVIEW APPLIED
卷 13, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.13.054014

关键词

-

资金

  1. Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) [15H05699]
  2. JSPS
  3. Grants-in-Aid for Scientific Research [15H05699] Funding Source: KAKEN

向作者/读者索取更多资源

We demonstrate a quantitative disentanglement of current-induced spin-orbit torques (SOTs) in Pt/Co bilayers, where both the spin Hall effect (SHE) and the Rashba-Edelstein effect (REE) are present. The SOTs originating from the SHE in bulk Pt and from the REE at substrate (sub.)/Pt and Pt/Co interfaces are successfully disentangled and quantified utilizing harmonic Hall measurements, by taking advantage of different characteristic lengths between the two effects during spin-current transport. The fieldlike (FL) torque in our samples originates from the REE, while both SHE and REE contribute to the dampinglike (DL) torque. The experimentally extracted transport characteristic lengths in bulk Pt (an effective spin-diffusion length) are 1.8-3.0 nm, while those at Pt interfaces (an effective REE thickness) are 0.2-0.6 nm. The extracted REE-induced FL torque (and DL torque) efficiencies at sub./Pt and Pt/Co interfaces are of the same order of magnitude, but of opposite signs, which is consistent with the REE scenario. The origin of the observed temperature-dependent SOT sign reversal is clarified with our disentanglement analysis, demonstrating the significant role of the REE at both sub./Pt and Pt/Co interfaces, in contributing to the overall SOTs, as the thickness of the heavy-metal layer is thinner than its spin-diffusion length or comparable to a REE thickness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据