4.5 Article

Nanoscale Mapping of the Directional Flow Patterns at Liquid-Solid Interfaces

期刊

PHYSICAL REVIEW APPLIED
卷 13, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.13.064003

关键词

-

资金

  1. Biotechnology and Biological Sciences Research Council [BB/M024830/1]
  2. Royal Society [RG2014R2]
  3. BBSRC [BB/M024830/1] Funding Source: UKRI

向作者/读者索取更多资源

The nanoscale behavior of liquid molecules and solutes along the interface with solids controls many processes such as molecular exchanges, wetting, electrochemistry, nanofluidics, biomolecular function, and lubrication. Experimentally, several techniques can explore the equilibrium molecular arrangement of liquids near the surface of immersed solids but quantifying the nanoscale flow patterns naturally adopted by this interfacial liquid remains a considerable challenge. Here we describe an approach based on atomic force microscopy, and able to quantify the flow direction preferentially adopted by liquids along interfaces with nanoscale precision. The approach, called vortex dissipation microscopy (VDM), uses high-frequency directional oscillations to derive local flow information around each location of the interface probed. VDM effectively derives nanoscale flow charts of the interfacial liquid parallel to a solid and can operate over a broad range of soft and hard interfaces. To illustrate its capabilities, we quantify the dynamics of aqueous solutions containing KCl or MgCl2 along the surface of a same graphene oxide flake. We show that dissolved K+ ions can move evenly in all directions along the interface whereas Mg2+ ions tend to move in registry with the underlying lattice due to enthalpic effects. The results provide in situ nanoscale insights into the ion-specific sieving properties of graphene oxide membranes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据