4.7 Article

Nano-Scale Residual Stress Profiling in Thin Multilayer Films with Non-Equibiaxial Stress State

期刊

NANOMATERIALS
卷 10, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/nano10050853

关键词

FIB-DIC; ring-core; low emissivity coatings; residual stress; profiling; non-equibiaxial stress; adhesion

资金

  1. European Commission through the project OYSTER [760827]

向作者/读者索取更多资源

Silver-based low-emissivity (low-E) coatings are applied on architectural glazing to cost-effectively reduce heat losses, as they generally consist of dielectric/Ag/dielectric multilayer stacks, where the thin Ag layer reflects long- wavelength infrared (IR), while the dielectric layers both protect the Ag and act as an anti-reflective barrier. The architecture of the multilayer stack influences its mechanical properties and it is strongly dependent on the residual stress distribution in the stack. Residual stress evaluation by combining focused ion beam (FIB) milling and digital image correlation (DIC), using the micro-ring core configuration (FIB-DIC), offers micron-scale lateral resolution and provides information about the residual stress variation with depth, i.e., it allows depth profiling for both equibiaxial and non-equibiaxial stress distributions and hence can be effectively used to characterize low-E coatings. In this work, we propose an innovative approach to improve the depth resolution and surface sensitivity for residual stress depth profiling in the case of ultra-thin as-deposited and post-deposition annealed Si3N4/Ag/ZnO low-E coatings, by considering different fractions of area for DIC strain analysis and accordingly developing a unique influence function to maintain the sensitivity of the technique at is maximum during the calculation. Residual stress measurements performed using this novel FIB-DIC approach revealed that the individual Si3N4/ZnO layers in the multilayer stack are under different amounts of compressive stresses. The magnitude and orientation of these stresses changes significantly after heat treatment and provides a clear explanation for the observed differences in terms of scratch critical load. The results show that the proposed FIB-DIC combined-areas approach is a unique method for accurately probing non-equibiaxial residual stresses with nano-scale resolution in thin films, including multilayers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据