4.7 Article

Dry Generation of CeO2 Nanoparticles and Deposition onto a Co-Culture of A549 and THP-1 Cells in Air-Liquid Interface-Dosimetry Considerations and Comparison to Submerged Exposure

期刊

NANOMATERIALS
卷 10, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/nano10040618

关键词

nanotoxicology; air-liquid interface; PreciseInhale; dosimetry; inflammation; ceria

资金

  1. Swedish Research Council for Health, Working Life and Welfare [FORTE] [2011-0832]
  2. Swedish Fund for ResearchWithout Animal Experiments [2017-0041]
  3. European Commission through FP7-NANOREG [310584]
  4. Swedish Research Council [VR] [2017-03931]
  5. Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning [Formas] [2017-00883]

向作者/读者索取更多资源

Relevant in vitro assays that can simulate exposure to nanoparticles (NPs) via inhalation are urgently needed. Presently, the most common method employed is to expose lung cells under submerged conditions, but the cellular responses to NPs under such conditions might differ from those observed at the more physiological air-liquid interface (ALI). The aim of this study was to investigate the cytotoxic and inflammatory potential of CeO2 NPs (NM-212) in a co-culture of A549 lung epithelial cells and differentiated THP-1 cells in both ALI and submerged conditions. Cellular dose was examined quantitatively using inductively coupled plasma mass spectrometry (ICP-MS). The role of serum and LPS-priming for IL-1 beta release was further tested in THP-1 cells in submerged exposure. An aerosol of CeO2 NPs was generated by using the PreciseInhale (R) system, and NPs were deposited on the co-culture using XposeALI (R). No or minor cytotoxicity and no increased release of inflammatory cytokines (IL-1 beta, IL-6, TNF alpha, MCP-1) were observed after exposure of the co-culture in ALI (max 5 mu g/cm(2)) or submerged (max 22 mu g/cm(2)) conditions. In contrast, CeO2 NPs cause clear IL-1 beta release in monocultures of macrophage-like THP-1, independent of the presence of serum and LPS-priming. This study demonstrates a useful approach for comparing effects at various in-vitro conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据