4.7 Article

Nanoporous Microsponge Particles (NMP) of Polysaccharides as Universal Carriers for Biomolecules Delivery

期刊

NANOMATERIALS
卷 10, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/nano10061075

关键词

drug delivery; hyaluronic acid; alginate; dextran; CM-dextran; slow delivery

资金

  1. European Union [690901]

向作者/读者索取更多资源

Different polysaccharides-namely dextran, carboxymethyl dextran, alginate, and hyaluronic acid-were compared for the synthesis of nanoporous microsponges particles (NMPs) obtained from a one-pot self-precipitation/cross-linking process. The morphologies and sizes of the NMPs were evaluated comparatively with respect to polymer-to-polymer and cross-linker solvents (water-based vs. DMSO). We found that the radial distribution of the polymer in the near-spherical NMPs was found to peak either at the core or in the corona of the particle, depending both on the specific polymer or the solvent used for the formation of NMPs. The NMP porosity and the swelling capability were evaluated via scanning electron microscopy (SEM). The degradation study indicated that after 10 h incubation with a reducing agent, approximately 80% of the NMPs were disassembled into soluble polysaccharide chains. The adsorption and release capacity of each type of NMP were evaluated using fluorescently labeled bovine serum albumin and lysozyme as model proteins, highlighting a release time typically much longer than the corresponding adsorption time. The dependence of the adsorption-release performance on pH was demonstrated as well. Confocal microscopy images allowed us to probe the different distribution of labeled proteins inside the NMP. The safety and non-cytotoxicity of NMPs were evaluated after incubation with fibroblast 3T3 cells and showed that all types of NMPs did not adversely affect the cell viability for concentrations up to 2.25 mu g/mL and an exposure time up to 120 h. Confocal microscopy imaging revealed also the effective interaction between NMPs and fibroblast 3T3 cells. Overall, this study describes a rapid, versatile, and facile approach for preparing a universal non-toxic, nanoporous carrier for protein delivery under physiological conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据