4.5 Article

Underwater Image Processing and Object Detection Based on Deep CNN Method

期刊

JOURNAL OF SENSORS
卷 2020, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2020/6707328

关键词

-

资金

  1. National Key R&D Program of China [2018YFC0309402]
  2. Fundamental Research Funds for the Central Universities [HEUCF180105]

向作者/读者索取更多资源

Due to the importance of underwater exploration in the development and utilization of deep-sea resources, underwater autonomous operation is more and more important to avoid the dangerous high-pressure deep-sea environment. For underwater autonomous operation, the intelligent computer vision is the most important technology. In an underwater environment, weak illumination and low-quality image enhancement, as a preprocessing procedure, is necessary for underwater vision. In this paper, a combination of max-RGB method and shades of gray method is applied to achieve the enhancement of underwater vision, and then a CNN (Convolutional Neutral Network) method for solving the weakly illuminated problem for underwater images is proposed to train the mapping relationship to obtain the illumination map. After the image processing, a deep CNN method is proposed to perform the underwater detection and classification, according to the characteristics of underwater vision, two improved schemes are applied to modify the deep CNN structure. In the first scheme, a 1*1 convolution kernel is used on the 26*26 feature map, and then a downsampling layer is added to resize the output to equal 13*13. In the second scheme, a downsampling layer is added firstly, and then the convolution layer is inserted in the network, the result is combined with the last output to achieve the detection. Through comparison with the Fast RCNN, Faster RCNN, and the original YOLO V3, scheme 2 is verified to be better in detecting underwater objects. The detection speed is about 50 FPS (Frames per Second), and mAP (mean Average Precision) is about 90%. The program is applied in an underwater robot; the real-time detection results show that the detection and classification are accurate and fast enough to assist the robot to achieve underwater working operation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据