4.6 Article

Characterization of MaltOBP1, a Minus-C Odorant-Binding Protein, From the Japanese Pine Sawyer Beetle, Monochamus alternatus Hope (Coleoptera: Cerambycidae)

期刊

FRONTIERS IN PHYSIOLOGY
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2020.00212

关键词

Monochamus alternatus; olfactory; odorant binding protein; fluorescence binding assay; plant volatile

资金

  1. Special Fund for Forest Scientific Research in the Public Welfare [201504302]
  2. Capacity Building for International Cooperation in Scientific and Technological Innovation [CAFYBB2018GB001]
  3. Project of Science and Technology Innovation Team, Xinyang Agriculture and Forestry University, P.R. China [KJCXTD-201903]
  4. Start-up Fund at the University of Kentucky

向作者/读者索取更多资源

Insect Odorant-Binding Proteins (OBPs) play crucial roles in the discrimination, binding and transportation of odorants. Herein, the full-length cDNA sequence of Minus-C OBP1 (MaltOBP1) from the Japanese pine sawyer beetle, Monochamus alternatus, was cloned by 3 ' and 5 ' RACE-PCR and analyzed. The results showed that MaltOBP1 contains a 435 bp open reading frame (ORF) that encodes 144 amino acids, including a 21-amino acid signal peptide at the N-terminus. The matured MaltOBP1 protein possesses a predicted molecular weight of about 14 kDa and consists of six alpha-helices, creating an open binding pocket, and two disulfide bridges. Immunoblotting results showed that MaltOBP1 was most highly expressed in antennae in both sexes, followed by wings and legs. Fluorescence assays demonstrated that MaltOBP1 protein exhibited high binding affinity with (R)-(+)-alpha-pinene, (-)-beta-pinene, trans-caryophyllene, (R)-(+)-limonene and (-)-verbenone, which are the main volatile compounds of the pine tree. Our combined results suggest that MaltOBP1 plays a role in host seeking behavior in M. alternatus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据