4.6 Article

Deep Spiking Neural Networks for Large Vocabulary Automatic Speech Recognition

期刊

FRONTIERS IN NEUROSCIENCE
卷 14, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnins.2020.00199

关键词

deep spiking neural networks; automatic speech recognition; tandem learning; neuromorphic computing; acoustic modeling

资金

  1. Singapore Government's Research, Innovation and Enterprise 2020 plan (Advanced Manufacturing and Engineering domain) [A1687b0033]
  2. Zhejiang Lab's International Talent Fund for Young Professionals
  3. Zhejiang Lab [2019KC0AB02]
  4. U Bremen Excellence Chairs program, Germany

向作者/读者索取更多资源

Artificial neural networks (ANN) have become the mainstream acoustic modeling technique for large vocabulary automatic speech recognition (ASR). A conventional ANN features a multi-layer architecture that requires massive amounts of computation. The brain-inspired spiking neural networks (SNN) closely mimic the biological neural networks and can operate on low-power neuromorphic hardware with spike-based computation. Motivated by their unprecedented energy-efficiency and rapid information processing capability, we explore the use of SNNs for speech recognition. In this work, we use SNNs for acoustic modeling and evaluate their performance on several large vocabulary recognition scenarios. The experimental results demonstrate competitive ASR accuracies to their ANN counterparts, while require only 10 algorithmic time steps and as low as 0.68 times total synaptic operations to classify each audio frame. Integrating the algorithmic power of deep SNNs with energy-efficient neuromorphic hardware, therefore, offer an attractive solution for ASR applications running locally on mobile and embedded devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据