4.6 Article

Polyurethane Foams and Bio-Polyols from Liquefied Cotton Stalk Agricultural Waste

期刊

SUSTAINABILITY
卷 12, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/su12104214

关键词

liquefaction; cotton stalk; bio-polyol; polyurethane foams; biodegradable; thermal properties

资金

  1. Japanese Ministry of Education, Culture, Sports, 377 Science and Technology (MEXT), Japan [15H05119, 376 FY2015similar toFY2017]

向作者/读者索取更多资源

Cotton is planted on a large scale in China, especially in the Xinjiang Region. A large amount of agricultural waste from cotton plants is produced annually, and currently poses a disposal problem. In this study the product after liquefaction of cotton stalk powder was mixed with diphenylmethane diisocyanate to prepare polyurethane foams. The effects of the liquefaction conditions on the properties of the polyols and polyurethane foams produced using cotton stalk were investigated. The optimal processing conditions for the liquefied product, considering the quality of the polyurethane foams, were studied as a function of the residue fraction. Bio-polyols with promising material properties were produced using liquefaction conditions of 150 degrees C, reaction time of 90 min, catalyst content of 3 wt.%, and 20 w/w% cotton stalk loading. We investigated the optimal processing conditions for producing bio-foam materials with mechanical properties comparable to those of petroleum-based foam materials. This study demonstrated the potential of cotton stalk agricultural waste for use as a feedstock for producing polyols via liquefaction. It was shown that polyethylene glycol 400 (PEG400) and glycerin can be used as alternative solvents for liquefaction of lignocellulosic biomass, such as cotton stalk, to produce bio-polyol and polyurethane foams.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据