4.5 Article

Peroxidase-like activity and antimicrobial properties of curcum-ininorganic hybrid nanostructure

期刊

SAUDI JOURNAL OF BIOLOGICAL SCIENCES
卷 27, 期 10, 页码 2574-2579

出版社

ELSEVIER
DOI: 10.1016/j.sjbs.2020.05.025

关键词

Curcumin-hybrid nanostructure; Catalytic activity; Antimicrobial activity

类别

资金

  1. Erciyes University Scientific Research Office [THD-2018-8069]

向作者/读者索取更多资源

For the first time in this study, curcumin was utilized as an organic component reacting with Cu (II) ion (Cu2+) as an inorganic component for fabrication of curcumin based Cu hybrid nanostructure (Cu-hNs). We also systematically examined the catalytic effect towards guaiacol and antimicrobial activities of Cu-hNs towards fish pathogen bacteria. For the characterization of Cu-hNs, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectrometry (FT-IR) analysis were used. We claimed that hydroxyl group might react with Cu2+ in phosphate solution (PO4-3) to form Cu-hNs. However, more uniform and spherical Cu-hNs were not seen owing to absence of more reactive functional groups like amine and carboxyl groups on structure of curcumin. In addition to our findings, synthesis of Cu-hNs were carried out in the various pH values to evaluate the effect of pHs on formation of Cu-hNs. The Cu-hNs exhibited remarkable catalytic activity throught the Fenton reaction in the presence of hydrogen peroxide (H2O2) and effective antimicrobial activities against Gram-positive/negative fish pathogen bacteria. In this study, cheap and efficient synthesis of nanoflowers (NFs) using plant extracts is proposed for biomedical applications rather than expensive molecules such as amino acids and DNA. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据