4.7 Article

Photochemical transformation of five novel brominated flame retardants: Kinetics and photoproducts

期刊

CHEMOSPHERE
卷 150, 期 -, 页码 453-460

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2015.12.125

关键词

Novel brominated flame retardants; Photolytic kinetics; Direct photolysis half-lives; Phototransformation products

资金

  1. National Basic Research Program [2013CB430403]
  2. National Natural Science Foundation of China [21137001, 21207013, 21325729]

向作者/读者索取更多资源

Many novel brominated flame retardants (NBFRs) are used as substitutes of polybrominated diphenyl ethers (PBDEs) in recent years. However, little is known about their phototransformation behavior, which may influence the environmental fate of these chemicals. In this study, photochemical behavior of five NBFRs, allyl-2,4,6-tribromophenyl ether (ATE), 2-bromoallyl-2,4,6-tribromophenyl ether (BATE), 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and 246-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) was investigated. Results show all the five NBFRs can undergo photochemical transformation under simulated sunlight irradiation. Quantum yields (Phi) of the five NBFRs varied from 0.012 of TTBP-TAZ in hexane to 0.091 of BTBPE in methanol. Half-lives (t(1/2)) relevant with solar irradiation of these NBFRs were estimated using the determined Phi, and the values are 1.5-12.0 d in summer and 17.1-165.0 d in winter. Debrominated and ether bond cleavage products were identified in the phototransformation of DPTE and BTBPE. Debromination on the phenyl is a main phototransformation pathway for DPTE, and both debromination and ether bond cleavage are main phototransformation pathways for BTBPE. This study is helpful to better understand the photo transformation behavior of the NBFRs. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据