4.4 Article

Duality and transport for supersymmetric graphene from the hemisphere partition function

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 5, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP05(2020)023

关键词

Boundary Quantum Field Theory; Conformal Field Theory; Supersymmetric Gauge Theory

资金

  1. U.K. Science AMP
  2. Technology Facilities Council [ST/P000258/1]
  3. Royal Society
  4. STFC [ST/P000258/1] Funding Source: UKRI

向作者/读者索取更多资源

We use localization to compute the partition function of a four dimensional, supersymmetric, abelian gauge theory on a hemisphere coupled to charged matter on the boundary. Our theory has eight real supercharges in the bulk of which four are broken by the presence of the boundary. The main result is that the partition function is identical to that of N = 2 abelian Chern-Simons theory on a three-sphere coupled to chiral multiplets, but where the quantized Chern-Simons level is replaced by an arbitrary complexified gauge coupling tau. The localization reduces the path integral to a single ordinary integral over a real variable. This integral in turn allows us to calculate the scaling dimensions of certain protected operators and two-point functions of abelian symmetry currents at arbitrary values of tau. Because the underlying theory has conformal symmetry, the current two-point functions tell us the zero temperature conductivity of the Lorentzian versions of these theories at any value of the coupling. We comment on S-dualities which relate different theories of supersymmetric graphene. We identify a couple of self-dual theories for which the complexified conductivity associated to the U(1) gauge symmetry is tau /2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据