4.4 Article

Brane webs and magnetic quivers for SQCD

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 3, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP03(2020)176

关键词

Brane Dynamics in Gauge Theories; Supersymmetric Gauge Theory; Extended Supersymmetry

资金

  1. STFC [ST/J0003533/1, ST/P000762/1]
  2. EPSRC [EP/K034456/1]
  3. EPSRC DTP studentship [EP/M507878/1]

向作者/读者索取更多资源

It is widely considered that the classical Higgs branch of 4d N = 2 SQCD is a well understood object. However there is no satisfactory understanding of its structure. There are two complications: (1) the Higgs branch chiral ring contains nilpotent elements, as can easily be checked in the case of SU(N) with 1 flavour. (2) the Higgs branch as a geometric space can in general be decomposed into two cones with nontrivial intersection, the baryonic and mesonic branches. To study the second point in detail we use the recently developed tool of magnetic quivers for five-brane webs, using the fact that the classical Higgs branch for theories with 8 supercharges does not change through dimensional reduction. We compare this approach with the computation of the hyper-Kahler quotient using Hilbert series techniques, finding perfect agreement if nilpotent operators are eliminated by the computation of a so called radical. We study the nature of the nilpotent operators and give conjectures for the Hilbert series of the full Higgs branch, giving new insights into the vacuum structure of 4d N = 2 SQCD. In addition we demonstrate the power of the magnetic quiver technique, as it allows us to identify the decomposition into cones, and provides us with the global symmetries of the theory, as a simple alternative to the techniques that were used to date.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据