4.7 Article

Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal

期刊

CHEMOSPHERE
卷 144, 期 -, 页码 2516-2521

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2015.07.080

关键词

Herbicide; Bioenergy; Chemisorption; Adsorption capacity; Functional groups

资金

  1. Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia [IRG-14-02]

向作者/读者索取更多资源

We investigated the removal of aqueous glyphosate using woody (dendro) biochar obtained as a waste by product from bioenergy industry. Equilibrium isotherms and kinetics data were obtained by adsorption experiments. Glyphosate adsorption was strongly pH dependent occurring maximum in the pH range of 5-6. The protonated amino moiety of the glyphosate molecule at this pH may interact with pi electron rich biochar surface via pi-pi electron donor-acceptor interactions. Isotherm data were best fitted to the Freundlich and Temkin models indicating multilayer sorption of glyphosate. The maximum adsorption capacity of dendro biochar for glyphosate was determined by the isotherm modeling to be as 44 mg/g. Adsorption seemed to be quite fast, reaching the equilibrium <1 h. Pseudo-second order model was found to be the most effective in describing kinetics whereas the rate limiting step possibly be chemical adsorption involving valence forces through sharing or exchanging electrons between the adsorbent and sorbate. The FTIR spectral analysis indicated the involvement of functional groups such as phenolic, amine, carboxylic and phosphate in adsorption. Hence, a heterogeneous chemisorption process between adsorbate molecules and functional groups on biochar surface can be suggested as the mechanisms involved in glyphosate removal. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据