4.7 Article

Toxicity removal assessments related to degradation pathways of azo dyes: Toward an optimization of Electro-Fenton treatment

期刊

CHEMOSPHERE
卷 161, 期 -, 页码 308-318

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2016.06.108

关键词

Carbon felt; Advanced oxidation process; Mineralization; Toxicity; Acid Orange 7

资金

  1. Vietnamese government (VIED- Vietnam International Education Development) [911]
  2. LABEX CHEMISYST
  3. internal project PAT/ECOTOX

向作者/读者索取更多资源

The degradation pathway of Acid Orange 7 (AO7) by Electro-Fenton process using carbon felt cathode was investigated via HPLC-UV and LC-MS, IC, TOC analysis and bioassays (Vibrio Fischeri 81.9% Microtox (R) screening tests). The TOC removal of AO7 reached 96.2% after 8 h treatment with the optimal applied current density at-8.3 mA cm(-2) and 0.2 mM catalyst concentration. The toxicity of treated solution increased rapidly to its highest value at the early stage of electrolysis (several minutes), corresponding to the formation of intermediate poisonous aromatic compounds such as 1,2-naphthaquinone (NAPQ) and 1,4-benzoquinone (BZQ). Then, the subsequent formation of aliphatic short-chain carboxylic acids like acetic acid, formic acid, before the complete mineralization, leaded to a non-toxic solution after 270 min for 500 mL of AO7 (1 mM). Moreover, a quantitative analysis of inorganic ions (i.e. ammonium, nitrate, sulfate) produced during the course of degradation could help to verify molar balance with regard to original nitrogen and sulfur elements. To conclude, a clear degradation pathway of AO7 was proposed, and could further be applied to other persistent pharmaceuticals in aquatic environment. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据