4.2 Article

Identification of Methylated Gene Biomarkers in Patients with Alzheimer's Disease Based on Machine Learning

期刊

BIOMED RESEARCH INTERNATIONAL
卷 2020, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2020/8348147

关键词

-

资金

  1. China National Science Funds for Distinguished Young Scholars [81625025]
  2. State Key Program of National Natural Science of China [81430100]
  3. National Natural Science Foundation of China [81603488, 81803965, 31500925]
  4. Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning [CNLZD1504]
  5. National Key Research and Development Project of China [2018YFC1315200]
  6. Funds for International Cooperation and Exchange of the National Natural Science Foundation of China [81820108034]

向作者/读者索取更多资源

Background. Alzheimer's disease (AD) is a neurodegenerative disorder and characterized by the cognitive impairments. It is essential to identify potential gene biomarkers for AD pathology. Methods. DNA methylation expression data of patients with AD were downloaded from the Gene Expression Omnibus (GEO) database. Differentially methylated sites were identified. The functional annotation analysis of corresponding genes in the differentially methylated sites was performed. The optimal diagnostic gene biomarkers for AD were identified by using random forest feature selection procedure. In addition, receiver operating characteristic (ROC) diagnostic analysis of differentially methylated genes was performed. Results. A total of 10 differentially methylated sites including 5 hypermethylated sites and 5 hypomethylated sites were identified in AD. There were a total of 8 genes including thioredoxin interacting protein (TXNIP), noggin (NOG), regulator of microtubule dynamics 2 (FAM82A1), myoneurin (MYNN), ankyrin repeat domain 34B (ANKRD34B), STAM-binding protein like 1, ALMalpha (STAMBPL1), cyclin-dependent kinase inhibitor 1C (CDKN1C), and coronin 2B (CORO2B) that correspond to 10 differentially methylated sites. The cell cycle (FDR=0.0284087) and TGF-beta signaling pathway (FDR=0.0380372) were the only two significantly enriched pathways of these genes. MYNN was selected as optimal diagnostic biomarker with great diagnostic value. The random forests model could effectively predict AD. Conclusion. Our study suggested that MYNN could be served as optimal diagnostic biomarker of AD. Cell cycle and TGF-beta signaling pathway may be associated with AD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据