4.7 Article

Fluorescence spectroscopy for monitoring reduction of natural organic matter and halogenated furanone precursors by biofiltration

期刊

CHEMOSPHERE
卷 153, 期 -, 页码 155-161

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2016.03.018

关键词

Natural organic matter; Fluorescence spectroscopy; Biofiltration; Disinfection by-products; Halogenated furanones; Genotoxicity

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) Chair in Drinking Water Research at the University of Toronto

向作者/读者索取更多资源

The application of fluorescence spectroscopy to monitor natural organic matter (NOM) reduction as a function of biofiltration performance was investigated. This study was conducted at pilot-scale where a conventional media filter was compared to six biofilters employing varying enhancement strategies. Overall reductions of NOM were identified by measuring dissolved organic carbon (DOC), and UV absorbance at 254 nm, as well as characterization of organic sub-fractions by liquid chromatography -organic carbon detection (LC-OCD) and parallel factors analysis (PARAFAC) of fluorescence excitation-emission matrices (FEEM). The biofilter using granular activated carbon media, with exhausted absorptive capacity, was found to provide the highest removal of all identified PARAFAC components. A microbial or processed humic-like component was found to be most amenable to biodegradation by biofilters and removal by conventional treatment. One refractory humic-like component, detectable only by FEEM-PARAFAC, was not well removed by biofiltration or conventional treatment. All biofilters removed protein-like material to a high degree relative to conventional treatment. The formation potential of two halogenated furanones, 3-chloro-4(dichloromethyl)-2(5H)-furanone (MX) and mucochloric acid (MCA), as well as overall treated water genotoxicity are also reported. Using the organic characterization results possible halogenated furanone and genotoxicity precursors are identified. Comparison of FEEM-PARAFAC and LC-OCD results revealed polysaccharides as potential MX/MCA precursors. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据