4.6 Article

Direct Z-Scheme Tannin-TiO2 Heterostructure for Photocatalytic Gold Ion Recovery from Electronic Waste

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 8, 期 19, 页码 7359-7370

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.0c00860

关键词

Titanium dioxide; Tannin; Gold nanoparticles; Electronic waste; Metal recovery

资金

  1. CTK Cosmetics (Republic of Korea)
  2. Nano-Material Technology Development Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT, and Future Planning [NRF-2017M3A7B4042235, NRF-2017M3A7B4052797]

向作者/读者索取更多资源

Precious-metal recovery from industrial wastewater has received considerable attention because of rapidly increasing amounts of electronic waste. Existing technologies have yet to be widely applied due to their high cost and low selectivity toward precious-metal ions. Herein, we report a direct Z-scheme tannin- TiO2 heterostructure for selective gold adsorption from electronic waste under solar irradiation. The tannin-coated TiO2 nanoparticles were prepared by a simple dipping method, and under light illumination, both tannin and TiO2 can serve as photosensitive components for the reduction of metal ions, with metal-to-ligand charge transfer from TiO2 to tannin extending the lifetime of the excited electrons. Moreover, no additional electron donors are required because the tannin layer scavenges the reactive oxygen species generated by the holes from the light-activated TiO2 surface. The heterostructure allows for the highly efficient photocatalytic recovery of gold ions, with 11 times higher adsorption capacity in the light compared to the dark. High selectivity toward gold ions was also demonstrated using a metal ion mixture including nine different metal ions that are commonly found in electronic waste. Our findings suggest that the Z-scheme heterostructure of polyphenol and semiconductor provides a promising photochemical pathway for efficient and selective metal ion recovery from electronic waste.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据