4.6 Article

Water-Resistant Zein-Based Adhesives

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 8, 期 20, 页码 7668-7679

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.0c01179

关键词

Proteins; Metal ions; Simple synthesis; Wide application; Adhesive strength

资金

  1. National Natural Science Foundation of China [51973116, 21574023, 21574024]

向作者/读者索取更多资源

Protein-based adhesives have gained considerable interest, due to their unique ecofriendliness and abundant functional groups. However, the presence of polar groups results in poor water resistance and unsatisfactory bonding strength of protein-based adhesives, limiting their practical applications. In addition, the complicated preparation process also made the production of protein-based adhesives time-consuming and costly. In this work, a hydrophobic protein zein, which lacks polar groups, was chosen as a basic ingredient for the preparation of protein-based adhesive. Sodium dodecyl sulfate (SDS) with a concentration of 200 mmol/L was added to promote the dissolution of zein and also render it negatively charged. The cations in metal chloride solution effectively cross-linked with SDS modified zein molecular chains, resulting in the formation of final zein-based adhesives. Results showed that a zein-based adhesive formed after treatment with 5 wt % FeCl3 aqueous solution (Fe(III)@zein/SDS adhesive) showed the best performance. It indicates that Fe(III)@zein/SDS adhesive could bond a wide range of materials. Four common substrates were chosen to test the adhesive properties of Fe(III)@zein/SDS adhesive at 25 degrees C, including one inorganic material glass, one metal material copper, and two organic polymer materials polyvinyl chloride (PVC) and polyimide (PI). The adhesive strength of Fe(III) @zein/SDS adhesive was found from 125 kPa (PI) to 586 kPa (copper) in dry conditions, while from 12 kPa (copper) to 33 kPa (PI) in the wet state, displaying a promising adhesive strength in both dry and wet conditions. Meanwhile, the Fe(III)@zein/SDS adhesive can be easily removed from the attached surfaces without nonchemical contamination by immersing in 70% ethanol aqueous solution. Therefore, such an environmentally friendly protein-based adhesive has great potential for practical use in various fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据