4.6 Article

Xenobiotic Contamination of Water by Plastics and Pesticides Revealed through Real-Time, Ultrasensitive, and Reliable Surface-Enhanced Raman Scattering

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 8, 期 20, 页码 7639-7648

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.0c00902

关键词

xenobiotics; water and food contamination; surface-enhanced Raman scattering; real-time detection; plastic degradation; Soret colloids; nanoparticle assembly

资金

  1. Council for Scientific and Industrial Research (CSIR), India
  2. Department of Science and Technology (DST)-Nano Mission program [SR/NM/TP-56/2016]

向作者/读者索取更多资源

Uncontrolled utilization and consequent ubiquitous percolation of carcinogenic and xenobiotic contaminants, such as plasticizers and pesticides, into the ecosystem have created an immediate demand for robust analytical detection techniques to identify their presence in water. Addressing this demand, we uncover the presence of xenobiotic contaminants such as bisphenol A (BPA), triclosan (TC), and dimethoate (DM) through a robust, ultrasensitive, and reliable surface-enhanced Raman scattering (SERS) platform. Thereby, conclusive real-time evidence of degradation of polyethylene terephthalate (PET) leading to the release of BPA in water is presented. Worryingly, the release of BPA occurs at ambient temperature (40 degrees C) and within realistic time scales (12 h) that are regularly encountered during the handling, transport, and storage of PET-based water containers. Complementary mass-spectrometric, surface-specific atomic force microscopy and surface-selective X-ray photoelectron spectroscopy confirm the nanoscale surface degradation of PET through a loss of C=O and C-O surface functionalities. Such ultrasensitive (ppm-level) spectroscopic detection is enabled by the bottom-up assemblies of metal nanoparticles (Soret colloids, SCs) acting as SERS platforms to provide high analytical enhancement factor (10(8)) with high reliability (relative standard deviation, RSD < 5%). Effective and rapid detection (30 s) of several other potential xenobiotic contaminants such as triclosan (TC) and dimethoate (DM) over a wide range of concentrations (10(-5)-10(-1) M) has also been demonstrated. Finally, nondestructive real-time spectroscopic sniffing of organophosphorous pesticides from the surface of fruits is achieved, illustrating the multiphasic versatility of this label-free, non-lithography-based SERS platform.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据