4.6 Article

Enhanced Capture of Particulate Matter by Molecularly Charged Electrospun Nanofibers

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 8, 期 21, 页码 7762-7773

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.9b06853

关键词

electrospun fibers; particulate matter; volatile organic compounds; nasal filters

资金

  1. Department of Science and Technology, Government of India
  2. IIT Madras
  3. University Grants Commission (UGC), Government of India

向作者/读者索取更多资源

We introduce molecularly charged electrospun nanofibers obtained by soft chemical treatment for the capture of particulate matter (PM). These PMs, along with certain volatile organic compounds (VOCs), pose a severe threat not only to human health but also to the environment. As the concentrations of these PMs have been steadily increasing in the Southeast Asian countries, a dire need for protection against these particles is warranted. Filtering out the polluted air using various filtration media, such as face masks and nasal filters, has been the standard method for minimizing exposure to PM. Here, we demonstrate the removal of PM and VOCs by utilizing electrospun nanofibers of polystyrene (PS) and polyacrylonitrile (PAN) with molecular charges imparted on them via chemical treatment. The chemically treated fibers were successful in capturing even particles measuring 300 nm, which are considered to be the most penetrable partides. We report a filtration efficiency of similar to 93% for removing such particles, which is similar to 3 +/- 1.5% enhancement when compared to the untreated fibers. The fibers have been subjected to extreme haze conditions (similar to 1413 mu g m(-3)) of PM2.5 for a duration of 1 h, and the filtration efficiency was measured to be similar to 99.01%. These fibers also possess the capability to capture model VOCs such as aniline, toluene, tetrahydrofuran, and chloroform. When PAN, PS, and their chemically treated counterparts were tested for their antibacterial activity, these filter mats had bactericidal effect on Escherichia coli, Bacillus subtilis, and Enterococcus faecalis. A nasal plug hosting these filter mats has been designed, which can offer personal protection from PM. Enhanced removal of residual particles is extremely important, and this difficult task is made possible with our approach. The efficiency of our approach is due to the charged nature of PM, especially of the smaller size regime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据