4.6 Article

Impact of Hydrogen Peroxide and Copper Sulfate on the Delayed Release of Microcystin

期刊

WATER
卷 12, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/w12041105

关键词

cyanobacteria; hydrogen peroxide; copper sulfate; stagnation; microcystins

资金

  1. Water Research Foundation [4692]
  2. Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery program
  3. Fonds de Recherche du Quebec-Nature et technologies (FRQNT)

向作者/读者索取更多资源

Algicides, like hydrogen peroxide and copper sulfate, are commonly applied to recreational waters and drinking water sources to mitigate cyanobacterial blooms. In this work, the effects of hydrogen peroxide and copper sulfate were evaluated in two natural bloom samples (collected from Canadian and American waterbodies) and one lab-cultured Microcystis aeruginosa suspended in Colorado River water. Five algicide to dissolved organic carbon (DOC) dose ratios were evaluated during an initial exposure period of 24 h. One dose ratio (0.4 H2O2:DOC or 0.25 CuSO4:DOC) was then evaluated during stagnation after quenching (hydrogen peroxide) or extended exposure (copper sulfate) for up to 96 or 168 h. During the initial hydrogen peroxide exposure, the CA bloom had no release of intracellular microcystins (MCs) and the USA bloom only released MC at 4 H2O2:DOC. The reverse occurred with copper sulfate, where the CA bloom released MCs at 0.6 CuSO4:DOC but the USA bloom had no detectable extracellular MCs. Extracellular MC was released from the lab-cultured Microcystis at the lowest hydrogen peroxide and copper sulfate doses. In the hydrogen peroxide stagnation experiment, intracellular MC decreased in the USA bloom after 168 h despite the low dose applied. Similarly, the extended copper sulfate exposure led to intracellular MC decreases in both bloom samples after 168 h, despite showing no impact during the initial 24 h monitoring period. The lab-cultured Microcystis was again less resistant to both algicides, with releases observed after less than 2 h of stagnation or exposure. The damage to cells as measured by pigments during these experiments did not match the MC data, indicating that blooms with depressed pigment levels can still be a risk to nearby drinking water sources or recreational activities. These results provide insight on the timeline (up to one week) required for monitoring the potential release of MCs after algicide application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据