4.7 Article

Predicting solvent-water partitioning of charged organic species using quantum-chemically estimated Abraham pp-LFER solute parameters

期刊

CHEMOSPHERE
卷 164, 期 -, 页码 634-642

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2016.08.135

关键词

Quantum chemistry; pp-LFER; Abraham; Ionic; Partitioning; Solvent

资金

  1. US Dept. of Education GAANN fellowship program
  2. SERDP [WP-2400]

向作者/读者索取更多资源

Methods for obtaining accurate predictions of solvent-water partitioning for neutral organic chemicals (e.g., K-ow) are well-established. However, methods that provide comparable accuracy are not available for predicting the solvent-water partitioning of ionic species. Previous methods for addressing charge contributions to solvent-water partitioning rely on charged solute descriptors which are obtained from regressions to neutral species descriptors as well as charged descriptors which are specific to unique charge-functionalities and structural moieties. This paper presents a method for obtaining Abraham poly-parameter linear free energy relationship (pp-LFER) descriptors using quantum chemical calculations and molecular structure, only. The method utilizes a large number of solvent-water systems to overcome large errors in individual quantum chemical computations of ionic solvent-water partition coefficients. The result is a single set of quantum-chemically estimated Abraham solute parameters (QCAP) which are solvent-independent, and can be used to predict the solvent-water partitioning of ionic species. Predictions of solvent-water partition coefficients for ionic species using quantum-chemically estimated Abraham parameters (QCAPs) are shown to provide improved accuracy compared over both existing Absolv-estimated Abraham solute parameters (AAP) as well as direct a priori quantum chemical (QC) calculations for partitioning of anionic solutes in 4 organic solvent-water systems (RMS = 0.740, 2.48 and 0.426 for the Absolv, QC and QCAP methods, respectively). For quaternary amine cations in the octanol-water system the RMS errors of the solvent-water partition coefficients were larger and similar between the two Abraham models (RMSE = 0.997 and 1.16, for the AAP and QCAP methods, respectively). Both methods showed significant improvement over direct QC calculations (RMSE = 2.82). (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据