4.7 Article

Development and Testing of a Clear-Sky Data Selection Algorithm for FY-3C/D Microwave Temperature Sounder-2

期刊

REMOTE SENSING
卷 12, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/rs12091478

关键词

MWTS-2; clear-sky data selection; typhoon structure

资金

  1. National Key R&D Program of China [2018YFC1507004]

向作者/读者索取更多资源

The Fengyun (FY)-3C/D microwave temperature sounder-2 (MWTS-2) is similar to the Advanced Microwave Sounding Unit-A (AMSU-A), except it lacks two window channels located at 23.8 GHz and 31.4 GHz. This makes a clear-sky data determination challenging for the MWTS-2 due to the unavailability of cloud liquid water path (LWP) retrievable from the two window channels. The purpose of this study is to develop a clear-sky data selection algorithm for the FY-3C/D MWTS-2 based on the bias-removed differences between observations and model simulations of the MWTS-2 50.3-GHz channel 1 (or equivalently AMSU-A channel 3). First, a point is defined as a temporal clear-sky (cloudy) point if the bias-removed difference between observed and simulated brightness temperatures is smaller than or equal to (greater than) 2 K. Then, a temporal clear-sky (cloudy) point is defined as a final clear-sky (cloudy) point if all points within its 60-km (100-km) radial distance are temporal clear-sky (cloudy) points. Finally, if the mean value of the bias-removed differences between observations and simulations in the 100-km circle from a temporal cloudy point are smaller than or equal to (greater than) 2 K, all temporal clear-sky points within this circle are (not) taken as the final clear-sky points. Applications of this algorithm to FY-3C MWTS-2 and MetOp-B AMSU-A lead to the following conclusions: (i) more than 70% (95%) of the clear-sky (cloudy) data points are successfully identified from both AMSU-A and MWTS-2 observations; (ii) the algorithm-selected clear-sky data points were located in clear-sky areas in the GOES-15 imager, and (iii) the bias-removed differences between observations and model simulations of MWTS-2 channel 1 well reveals the eye, the eyewall, and the spiral rainband structure of Super Typhoon Halong (2014).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据