4.7 Article

Point Cloud Stacking: A Workflow to Enhance 3D Monitoring Capabilities Using Time-Lapse Cameras

期刊

REMOTE SENSING
卷 12, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/rs12081240

关键词

time-lapse photogrammetry; multi-view stereo; 3D point clouds; 3D stacking; change detection; rockslope monitoring

资金

  1. PROMONTEC Project - Ministry of Science, Innovation and Universities (MICINN-FEDER) [CGL2017-84720-R]
  2. APIF grant - University of Barcelona
  3. European Union's Horizon 2020 research and innovation programme under a Marie Sklodowska-Curie fellowship [705215]
  4. Marie Curie Actions (MSCA) [705215] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

The emerging use of photogrammetric point clouds in three-dimensional (3D) monitoring processes has revealed some constraints with respect to the use of LiDAR point clouds. Oftentimes, point clouds (PC) obtained by time-lapse photogrammetry have lower density and precision, especially when Ground Control Points (GCPs) are not available or the camera system cannot be properly calibrated. This paper presents a new workflow called Point Cloud Stacking (PCStacking) that overcomes these restrictions by making the most of the iterative solutions in both camera position estimation and internal calibration parameters that are obtained during bundle adjustment. The basic principle of the stacking algorithm is straightforward: it computes the median of the Z coordinates of each point for multiple photogrammetric models to give a resulting PC with a greater precision than any of the individual PC. The different models are reconstructed from images taken simultaneously from, at least, five points of view, reducing the systematic errors associated with the photogrammetric reconstruction workflow. The algorithm was tested using both a synthetic point cloud and a real 3D dataset from a rock cliff. The synthetic data were created using mathematical functions that attempt to emulate the photogrammetric models. Real data were obtained by very low-cost photogrammetric systems specially developed for this experiment. Resulting point clouds were improved when applying the algorithm in synthetic and real experiments, e.g., 25th and 75th error percentiles were reduced from 3.2 cm to 1.4 cm in synthetic tests and from 1.5 cm to 0.5 cm in real conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据