4.7 Article

Novel Soil Moisture Estimates Combining the Ensemble Kalman Filter Data Assimilation and the Method of Breeding Growing Modes

期刊

REMOTE SENSING
卷 12, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/rs12050889

关键词

soil moisture; data assimilation; breeding of growing modes; ensemble Kalman filter

资金

  1. National Natural Science Foundation of China [61971316]
  2. National Key Research Development Program of China [2016YFB0502204]

向作者/读者索取更多资源

Soil moisture plays an important role in climate prediction and drought monitoring. Data assimilation, as a method of integrating multi-geographic spatial data, plays an increasingly important role in estimating soil moisture. Model prediction error, an important part of the background field information, occupies a position that could not be ignored in data assimilation. The model prediction error in data assimilation consists of three parts: forcing data error, initial field error, and model error. However, the influence of model error in current data assimilation methods has not been completely considered in many studies. Therefore, we proposed a theoretical framework of the ensemble Kalman filter (EnKF) data assimilation based on the breeding of growing modes (BGM) method. This framework used the BGM method to perturb the initial field error term w of EnKF, and the EnKF data assimilation to assimilate the data to obtain the soil moisture analysis value. The feasibility and superiority of the proposed framework were verified, taking into consideration breeding length and ensemble size through experiments. We conducted experiments and evaluated the accuracy of the BGM and the Monte Carlo (MC) methods. The experiment showed that the BGM method could improve the estimation accuracy of the assimilated soil moisture and solve the problem of model error which is not fully expressed in data assimilation. This study can be widely used in data assimilation and has a significant role in weather forecast and drought monitoring.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据