4.7 Review

Polymer-Based MEMS Electromagnetic Actuator for Biomedical Application: A Review

期刊

POLYMERS
卷 12, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/polym12051184

关键词

polymer composites; microelectromechanical system (MEMS); electromagnetic (EM) actuator; magnetic membrane; microfluidic; biomedical

资金

  1. Ministry of Education Malaysia [AKU 254]
  2. Ministry of Higher Education under LRGS Project [LRGS/2015/UKM-UKM/NANOMITE/04/01]
  3. Directorate of Research and Community Service, Ministry of Education and Culture, Republic of Indonesia

向作者/读者索取更多资源

In this study, we present a comprehensive review of polymer-based microelectromechanical systems (MEMS) electromagnetic (EM) actuators and their implementation in the biomedical engineering field. The purpose of this review is to provide a comprehensive summary on the latest development of electromagnetically driven microactuators for biomedical application that is focused on the movable structure development made of polymers. The discussion does not only focus on the polymeric material part itself, but also covers the basic mechanism of the mechanical actuation, the state of the art of the membrane development and its application. In this review, a clear description about the scheme used to drive the micro-actuators, the concept of mechanical deformation of the movable magnetic membrane and its interaction with actuator system are described in detail. Some comparisons are made to scrutinize the advantages and disadvantages of electromagnetic MEMS actuator performance. The previous studies and explanations on the technology used to fabricate the polymer-based membrane component of the electromagnetically driven microactuators system are presented. The study on the materials and the synthesis method implemented during the fabrication process for the development of the actuators are also briefly described in this review. Furthermore, potential applications of polymer-based MEMS EM actuators in the biomedical field are also described. It is concluded that much progress has been made in the material development of the actuator. The technology trend has moved from the use of bulk magnetic material to using magnetic polymer composites. The future benefits of these compact flexible material employments will offer a wide range of potential implementation of polymer composites in wearable and portable biomedical device applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据