4.7 Article

pH-Dependent Gelation of a Stiff Anionic Polysaccharide in the Presence of Metal Ions

期刊

POLYMERS
卷 12, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/polym12040868

关键词

polysaccharide; xanthan; cross-link; rheometry

资金

  1. Russian Foundation for Basic Research (RFBR) [NO.18-33-01171 mol_a]

向作者/读者索取更多资源

Cross-linking of polysaccharides by metal ions provides polymer gels highly required by industrial applications. In this article, we study the rheological properties and microstructure of solutions of a stiff anionic polysaccharide xanthan cross-linked by chromium (III) ions, and we demonstrate that their properties are highly sensitive to the preparation pH. Stable gels are obtained in a wide range of pH from 2.4 to 7.8. The maximum elastic modulus is observed for the gels made at pH 6.3, and by freeze-fracture transmission electron microscopy it is shown that they are characterized by the most dense network structure. However, out of this pH interval, no gelation is observed. At low pH (< 2.4) it is due to high protonation of carboxylic groups of xanthan preventing their interaction with chromium ions, and to the disappearance of oligomeric ions, which are effective in cross-linking. At high pH (> 7.8) the absence of gelation is caused by the transformation of reactive chromium ions into insoluble chromium hydroxide. At the same time, for the gels initially formed at pH 6.3, subsequent change of pH to strongly acidic (1.4) or basic (8.9) medium does not affect appreciably their properties, meaning that chromium cross-links are stable once they are formed. These observations open a reliable route to produce polysaccharide gels with required mechanical properties in a wide pH range where they initially cannot be prepared. It is also shown that the increase of pH to 6.3 of the initially ungelled solution prepared at pH 1.5 results in gelation. This effect offers a facile way for delayed gelation of polysaccharides, which is especially required by oil industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据