4.6 Article

A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneum

期刊

PLOS GENETICS
卷 16, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1008772

关键词

-

资金

  1. National Natural Science Foundation of China [31872970, 31572326]
  2. USDA National Institute of Food and Agriculture, Hatch project [KS538]
  3. National Institute of Health [R21AI135457]
  4. Nanjing Normal University Outstanding Doctoral Dissertation Cultivation Program [YBPY18_001]

向作者/读者索取更多资源

In the postgenomics era, comparative genomics have advanced the understanding of evolutionary processes of neuropeptidergic signaling systems. The evolutionary origin of many neuropeptidergic signaling systems can be traced date back to early metazoan evolution based on the conserved sequences. Insect parathyroid hormone receptor (iPTHR) was previously described as an ortholog of vertebrate PTHR that has a well-known function in controlling bone remodeling. However, there was no sequence homologous to PTH sequence in insect genomes, leaving the iPTHR as an orphan receptor. Here, we identified the authentic ligand insect PTH (iPTH) for the iPTHR. The taxonomic distribution of iPTHR, which is lacking in Diptera and Lepidoptera, provided a lead for identifying the authentic ligand. We found that a previously described orphan ligand known as PXXXamide (where X is any amino acid) described in the cuttlefish Sepia officinalis has a similar taxonomic distribution pattern as iPTHR. Tests of this peptide, iPTH, in functional reporter assays confirmed the interaction of the ligand-receptor pair. Study of a model beetle, Tribolium castaneum, was used to investigate the function of the iPTH signaling system by RNA interference followed by RNA sequencing and phenotyping. The results suggested that the iPTH system is likely involved in the regulation of cuticle formation that culminates with a phenotype of defects in wing exoskeleton maturation at the time of adult eclosion. Moreover, RNAi of iPTHRs also led to significant reductions in egg numbers and hatching rates after parental RNAi. Author summary Vertebrate parathyroid hormone (PTH) and its receptors have been extensively studied with respect to their function in bone remodeling and calcium metabolism. Insect parathyroid hormone receptors (iPTHRs) have been previously described as counterparts of vertebrate PTHRs, however, they are still orphan receptors for which the authentic ligands and biological functions remain unknown. We describe an insect form of parathyroid hormone (iPTH) by analyzing its interactions with iPTHRs. Identification of this new insect peptidergic system proved that the PTH system is an ancestral signaling system dating back to the evolutionary time before the divergence of protostomes and deuterostomes. We also investigated the functions of the iPTH system in a model beetle Tribolium castaneum by using RNA interference. RNA interference of iPTHR resulted in defects in wing exoskeleton maturation and fecundity. Based on the differential gene expression patterns and the phenotype induced by RNAi, we propose that the iPTH system is likely involved in the regulation of exoskeletal cuticle formation and fecundity in insects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据