4.6 Article

Modeling the temporal network dynamics of neuronal cultures

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 16, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1007834

关键词

-

资金

  1. U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
  2. LDRD [17-SI-002]

向作者/读者索取更多资源

Author summary Neurons form complex networks that play a critical role in the development and aging of the brain, as well as in health and disease. Understanding how these networks form and evolve over time can lead us to advances in neuronal and cognitive health. Previous studies have mainly used summary statistics or graph features recorded at different points in time to analyze neuronal networks. However, this approach ignores the temporal dependency of these features and may lead to discovering spurious patterns in the data. In order to thoroughly characterize neuronal networks, time dependencies must be explicitly modeled. We present a statistical model that captures both the underlying structural and temporal dynamics of neuronal networks. Neurons form complex networks that evolve over multiple time scales. In order to thoroughly characterize these networks, time dependencies must be explicitly modeled. Here, we present a statistical model that captures both the underlying structural and temporal dynamics of neuronal networks. Our model combines the class of Stochastic Block Models for community formation with Gaussian processes to model changes in the community structure as a smooth function of time. We validate our model on synthetic data and demonstrate its utility on three different studies using in vitro cultures of dissociated neurons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据