4.7 Article

Black Holes in 4D N=4 Super-Yang-Mills Field Theory

期刊

PHYSICAL REVIEW X
卷 10, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.10.021037

关键词

Gravitation; Particles and Fields; String Theory

资金

  1. MIUR [RBSI1471GJ]

向作者/读者索取更多资源

Black-hole solutions to general relativity carry a thermodynamic entropy, discovered by Bekenstein and Hawking to be proportional to the area of the event horizon, at leading order in the semiclassical expansion. In a theory of quantum gravity, black holes must constitute ensembles of quantum microstates whose large number accounts for the entropy. We study this issue in the context of gravity with a negative cosmological constant. We exploit the most basic example of the holographic description of gravity (AdS/CFT): type IIB string theory on AdS(5) x S-5, equivalent to maximally supersymmetric Yang-Mills theory in four dimensions. We thus resolve a long-standing question: Does the four-dimensional N = 4 SU(N) Super-Yang-Mills theory on S-3 at large N contain enough states to account for the entropy of rotating electrically charged supersymmetric black holes in 5D anti-de Sitter space? Our answer is positive. By reconsidering the large N limit of the superconformal index, using the so-called Bethe-ansatz formulation, we find an exponentially large contribution which exactly reproduces the Bekenstein-Hawking entropy of the black holes. Besides, the large N limit exhibits a complicated structure, with many competing exponential contributions and Stokes lines, hinting at new physics. Our method opens the way toward a quantitative study of quantum properties of black holes in anti-de Sitter space.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据