4.7 Article

Comparison of GF2 and SPOT6 Imagery on Canopy Cover Estimating in Northern Subtropics Forest in China

期刊

FORESTS
卷 11, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/f11040407

关键词

GF2; SPOT6; high spatial resolution; canopy cover; ensemble learning model; gray level co-occurrence matrix (GLCM)

类别

资金

  1. National Key Research and Development Program [2017YFC050550404]
  2. National Natural Science Foundation of China [51778263]

向作者/读者索取更多资源

Canopy cover is an important vegetation attribute used for many environmental applications such as defining management objectives, thinning and ecological modeling. However, the estimation of canopy cover from high spatial resolution imagery is still a difficult task due to limited spectral information and the heterogeneous pixel values of the same canopy. In this paper, we compared the capacity of two high spatial resolution sensors (SPOT6 and GF2) using three ensemble learning models (Adaptive Boosting (AdaBoost), Gradient Boosting (GDBoost), and random forest (RF)), to estimate canopy cover (CC) in a Chinese northern subtropics forest. Canopy cover across 97 plots was measured across 41 needle forest plots, 24 broadleaf forest plots, and 32 mixed forest plots. Results showed that (1) the textural features performed more importantly than spectral variables according to the number of variables in the top ten predictors in estimating canopy cover (CC) in both SPOT6 and GF2. Moreover, the vegetation indices in spectral variables had a lower relative importance value than the band reflectance variables. (2) GF2 imagery outperformed SPOT6 imagery in estimating CC when using the ensemble learning model in our data. On average across the models, the R-2 was almost 0.08 higher for GF2 over SPOT6. Likewise, the average RMSE and average MAE were 0.002 and 0.01 lower in GF2 than in SPOT6. (3) The ensemble learning model showed good results in estimating CC, yet the different models performed a little differently in the results. Additionally, the GDBoost model performed the best of all the ensemble learning models with R-2 = 0.92, root mean square error (RMSE) = 0.001 and mean absolute error (MAE) = 0.022.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据