4.7 Article

Performance-driven optimal design of distributed monitoring for large-scale nonlinear processes

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chemolab.2016.04.012

关键词

Distributed monitoring; Large-scale nonlinear process; Bayesian fault diagnosis; Kernel principal component analysis

资金

  1. 973 Project of China [2013CB733600]
  2. National Natural Science Foundation of China [21176073, 61374126]
  3. Program for New Century Excellent Talents in University [NCET-09-0346]
  4. Fundamental Research Funds for the Central Universities
  5. Natural Science Foundation of Shandong Province [ZR2013FM021]
  6. Alexander von Humboldt Foundation

向作者/读者索取更多资源

Centralized monitoring generally involves all measured variables in one model. However, the existence of variables without beneficial information may cause redundancy in the monitoring and degrade monitoring performance. This paper proposes a performance-driven distributed monitoring scheme that incorporates kernel principal analysis (KPCA) and Bayesian diagnosis system for large-scale nonlinear processes. First, a stochastic optimization method is utilized to select a subset of variables that provide the best possible performance for each fault and to decompose the process into several sub-blocks. Second, a KPCA model is established in each block to deal with nonlinearity and generate fault signature evidence. Finally, a Bayesian fault diagnosis system is established to identify the fault status of the entire process. Considering the significant calculation amount in Bayesian diagnosis, optimal evidence source selection is performed to reduce the redundancy. Case studies on the Tennessee Eastman benchmark process and a continuous stirred tank reactor process demonstrate the efficiency of the proposed scheme. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据