4.7 Article

Conjugated Polymer Controlled Morphology and Charge Transport of Small-Molecule Organic Semiconductors

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-020-61282-x

关键词

-

资金

  1. University of Alabama
  2. Science and Technology Project of Liaoning Province [20180540006]

向作者/读者索取更多资源

In this study, we report an effective approach to tune the crystallization, microstructure and charge transport of solution-processed organic semiconductors by blending with a conjugated polymer additive poly(3-hexylthiophene) (P3HT). When 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) was used as a model semiconductor material to mix with different amount of P3HT, their intermolecular interactions led to distinctive TIPS pentacene film morphologies, including randomly-oriented crystal ribbons, elongated needles with enhanced long-range order, and grasslike curved microwires with interlinkages. Each type of morphology was found to further correlate to considerably different charge transport and device performance. As compared to pristine TIPS pentacene devices, bottom-gate, top-contact OTFTs with 2% in weight P3HT additive showed a 2-fold and 5-fold improvement of average field-effect mobility and performance consistency (defined as the ratio of average mobility to the standard deviation), respectively. The improvement in transistor electrical performance can be attributed to the combined effect of enhanced crystal orientation and uniformity, as well as increased areal coverage. This work can be applied beyond the particular example demonstrated in this study and to tune the charge transport of other small-molecule organic semiconductors in general.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据