4.7 Article

Extracellular vesicles derived from human adipose-derived stem cells promote the exogenous angiogenesis of fat grafts via the let-7/AGO1/VEGF signalling pathway

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-020-62140-6

关键词

-

资金

  1. National Natural Science Foundation of China [81660326]
  2. Natural Science Foundation of Jiangxi Province [20171ACB20037]
  3. Youth Natural Science Foundation of Jiangxi Province [20192BAB215028]
  4. Youth Science Foundation of the Second Affiliated Hospital of Nanchang University [2019YNQN12021, 2016YNQN12040]
  5. Key Projects of Science and Technology Research of Education Department of Jiangxi Province [GJJ150057]
  6. Science and Technology Program of Jiangxi Provincial Department of Health [20204355]

向作者/读者索取更多资源

Extracellular vesicles (EVs) derived from human adipose-derived stem cells (hADSCs) possess the proangiogenic potential for ischaemic diseases. Thus, our study aimed to evaluate the therapeutic effects of hADSC-EVs on fat grafting and explore the mechanism of hADSC-EVs promoting angiogenesis. The EVs released by hADSCs incubated under normal or hypoxic conditions were employed to supplement fat grafting in a nude mouse model. The proliferation, migration, tube formation and vascular endothelial growth factor (VEGF) secretion of vascular endothelial cells co-cultured with two kinds of hADSC-EVs were analysed. MicroRNA sequencing was performed to reveal the species and content of microRNAs in hADSC-EVs, the key microRNAs were blocked, and their effect in promoting angiogenesis was detected via above protocols as a reverse proof. The results demonstrate that hADSC-EVs could improve the survival of fat grafts by promoting exogenous angiogenesis and enhance the proliferation, migration, tube formation and VEGF secretion of vascular endothelial cells. In addition, the pro-angiogenic effect of hADSC-EVs in vivo and vitro could be enhanced by hypoxic pre-treatment. We found that the let-7 family, a kind of hypoxic-related microRNA, is enriched in hypoxic hADSC-EVs that contribute to angiogenesis via the let-7/argonaute 1 (AGO1)/VEGF signalling pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据