4.7 Article

Visualizing the dynamic change of Ocular Response Analyzer waveform using Variational Autoencoder in association with the peripapillary retinal arteries angle

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-020-63601-8

关键词

-

资金

  1. Japan Science and Technology Agency (JST)-CREST [17K11418]
  2. Ministry of Education, Culture, Sports, Science and Technology of Japan

向作者/读者索取更多资源

The aim of the current study is to identify possible new Ocular Response Analyzer (ORA) waveform parameters related to changes of retinal structure/deformation, as measured by the peripapillary retinal arteries angle (PRAA), using a generative deep learning method of variational autoencoder (VAE). Fifty-four eyes of 52 subjects were enrolled. The PRAA was calculated from fundus photographs and was used to train a VAE model. By analyzing the ORA waveform reconstructed (noise filtered) using VAE, a novel ORA waveform parameter (Monot1-2), was introduced, representing the change in monotonicity between the first and second applanation peak of the waveform. The variables mostly related to the PRAA were identified from a set of 41 variables including age, axial length (AL), keratometry, ORA corneal hysteresis, ORA corneal resistant factor, 35 well established ORA waveform parameters, and Monot1-2, using a model selection method based on the second-order bias-corrected Akaike information criterion. The optimal model for PRAA was the AL and six ORA waveform parameters, including Monot1-2. This optimal model was significantly better than the model without Monot1-2 (p=0.0031, ANOVA). The current study suggested the value of a generative deep learning approach in discovering new useful parameters that may have clinical relevance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据