4.7 Article

Fully Untethered Battery-free Biomonitoring Electronic Tattoo with Wireless Energy Harvesting

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-020-62097-6

关键词

-

资金

  1. European Regional Development Fund (FEDER), through the Programa Operacional Regional do Centro (CENTRO2020) [CENTRO-01-0145-FEDER-000014]
  2. CMU-Portugal project Stretchtronics [CMUP-ERI/TIC/0021/2014]
  3. national project Dermotronic [02/SAICT/2017 - 31784]
  4. national project PAMI [CENTRO-01-0145-FEDER-022158]

向作者/读者索取更多资源

Bioelectronics stickers that interface the human epidermis and collect electrophysiological data will constitute important tools in the future of healthcare. Rapid progress is enabled by novel fabrication methods for adhesive electronics patches that are soft, stretchable and conform to the human skin. Yet, the ultimate functionality of such systems still depends on rigid components such as silicon chips and the largest rigid component on these systems is usually the battery. In this work, we demonstrate a quickly deployable, untethered, battery-free, ultrathin (similar to 5 mu m) passive electronic tattoo that interfaces with the human skin for acquisition and transmission of physiological data. We show that the ultrathin film adapts well with the human skin, and allows an excellent signal to noise ratio, better than the gold-standard Ag/AgCl electrodes. To supply the required energy, we rely on a wireless power transfer (WPT) system, using a printed stretchable Ag-In-Ga coil, as well as printed biopotential acquisition electrodes. The tag is interfaced with data acquisition and communication electronics. This constitutes a data-by-request system. By approaching the scanning device to the applied tattoo, the patient's electrophysiological data is read and stored to the caregiver device. The WPT device can provide more than 300 mW of measured power if it is transferred over the skin or 100 mW if it is implanted under the skin. As a case study, we transferred this temporary tattoo to the human skin and interfaced it with an electrocardiogram (ECG) device, which could send the volunteer's heartbeat rate in real-time via Bluetooth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据