4.7 Article

Muscle architecture dynamics modulate performance of the superficial anterior temporalis muscle during chewing in capuchins

期刊

SCIENTIFIC REPORTS
卷 10, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-020-63376-y

关键词

-

资金

  1. National Science Foundation [NSF-BCS-1440516, NSF-BCS-1440541, NSF-BCS-1440542, NSF-BCS-1440545, NSF-BCS-1627206]
  2. AAPA Cobb Award

向作者/读者索取更多资源

Jaw-muscle architecture is a key determinant of jaw movements and bite force. While static length-force and force-velocity relationships are well documented in mammals, architecture dynamics of the chewing muscles and their impact on muscle performance are largely unknown. We provide novel data on how fiber architecture of the superficial anterior temporalis (SAT) varies dynamically during naturalistic feeding in tufted capuchins (Sapajus apella). We collected data on architecture dynamics (changes in muscle shape or the architectural gear ratio) during the gape cycle while subjects fed on foods of different mechanical properties. Architecture of the SAT varied with phases of the gape cycle, but gape distance accounted for the majority of dynamic changes in architecture. In addition, lower gear ratios (low muscle velocity relative to fascicle velocity) were observed when animals chewed on more mechanically resistant foods. At lower gear ratios, fibers rotated less during shortening resulting in smaller pinnation angles, a configuration that favors increased force production. Our results suggest that architectural dynamics may influence jaw-muscle performance by enabling the production of higher bite forces during the occlusal phase of the gape cycle and while processing mechanically challenging foods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据