4.6 Article

Hot Corrosion and Mechanical Performance of Repaired Inconel 718 Components via Laser Additive Manufacturing

期刊

MATERIALS
卷 13, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/ma13092128

关键词

Inconel 718; hot corrosion; microstructural change; mechanical properties; laser additive manufacturing

资金

  1. National Key R&D Program of China [2017YFB1103600]
  2. Fundamental Research Funds for the Provincial Universities of Zhejiang [RF-C2019003]

向作者/读者索取更多资源

Hot corrosion is one of the crucial failure modes of Ni-based superalloy components operating at high temperatures, which inevitably affects the subsequent mechanical properties of the alloys. In this research, damaged Inconel 718 alloy components with a pre-made trapezoid groove are repaired using laser additive manufacturing technique, and the change mechanisms of the microstructure and tensile properties of the repaired Inconel 718 alloy due to the hot corrosion in the salt mixture of 87.5 wt.% Na2SO4 + 5 wt.% NaCl + 7.5 wt.% NaNO3 at 650 degrees C for different durations are investigated. The results show that oxidation and Cr-depletion occur on the repaired components due to the hot corrosion, and the corrosion products are mainly composed of Cr2O3, Fe3O4, and Ni3S2. The tensile strength and elongation of the as-repaired specimens are 736.6 MPa and 12.5%, respectively. After being hot corroded for 50 h, the tensile strength increases to 1022.9 MPa and elongation decreases to 1.7%. However, after being hot corroded for 150 h, both tensile strength and elongation of the repaired specimens drop to 955.8 MPa and 1.2%, respectively. The mechanical performance alteration is highly related to thermal effects instead of the molten salt attack.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据